
353Xiaoyu Yang et al. (eds.), Guide to e-Science: Next Generation Scientific
Research and Discovery, Computer Communications and Networks,
DOI 10.1007/978-0-85729-439-5_13, © Springer-Verlag London Limited 2011

Abstract e-Science has been greatly enhanced from the developing capability and
usability of cyberinfrastructure. This chapter explains how scientific workflow
systems can facilitate e-Science discovery in Grid environments by providing
features including scientific process automation, resource consolidation, parallelism,
provenance tracking, fault tolerance, and workflow reuse. We first overview the
core services to support e-Science discovery. To demonstrate how these services
can be seamlessly assembled, an open source scientific workflow system, called
Kepler, is integrated into the University of California Grid. This architecture is
being applied to a computational enzyme design process, which is a formidable and
collaborative problem in computational chemistry that challenges our knowledge of
protein chemistry. Our implementation and experiments validate how the Kepler
workflow system can make the scientific computation process automated, pipe-
lined, efficient, extensible, stable, and easy-to-use.

13.1 Introduction

“e-Science is about global collaboration in key areas of science and the next genera-
tion of infrastructure that will enable it.”1 Grid computing “coordinates resources
that are not subject to centralized control by using standard, open, general-purpose

J. Wang (*), D. Crawl, I. Altintas, and S. Smallen
San Diego Supercomputer Center, UCSD, 9500 Gilman Drive, MC 0505, La Jolla,
CA 92093, USA
e-mail: jianwu@sdsc.edu

P. Korambath, K. Jin, and B. Labate
Institute for Digital Research and Education, UCLA, 5308 Math Sciences, Los Angeles,
CA 90095, USA

S. Kim, S. Johnson, and K.N. Houk
Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA

Chapter 13
Facilitating e-Science Discovery Using Scientific
Workflows on the Grid

Jianwu Wang, Prakashan Korambath, Seonah Kim, Scott Johnson,
Kejian Jin, Daniel Crawl, Ilkay Altintas, Shava Smallen, Bill Labate,
and Kendall N. Houk

1 John Taylor, Director General of Research Councils, Office of Science and Technology, UK.

354 J. Wang et al.

protocols and interfaces, and deliver nontrivial qualities of service” [1]. For over a
decade, Grid techniques have been successfully used to enable or facilitate domain
scientists on their scientific computational problems by providing federated
resources and services. Yet the software that creates and manages Grid environ-
ments, such as the Globus toolkit,2 gLite,3 and Unicore,4 alone is not sufficient to
manage the complex job control and data dependencies for many domain-specific
problems. Such problems require combining more than one complex computational
code into flexible and reusable computational scientific processes [2–4]. Scientific
workflow systems [5, 6] enable researchers to design computational experiments
that span multiple distributed computational and analytical models, and in the pro-
cess, store, access, transfer, and query information. This requires the integration of
a variety of computational tools, including the domain-specific software, database
programs as well as preparation, visualization, and analysis toolkits [2, 3].

In this chapter, we explain how scientific workflow systems can facilitate the
e-Science discovery in Grid environments by providing features such as scientific
process automation, resource consolidation, parallelism, provenance tracking, fault
tolerance, and workflow reuse. The chapter is organized as follows. In Sect. 13.2,
we summarize the core services needed for e-Science discovery. Section 13.3 dem-
onstrates an assembly of these services by integrating the Kepler workflow system5
into the University of California Grid (UC Grid).6 In Sect. 13.4, an application for
a theoretical enzyme design computation process is explained using the integrated
architecture. We concluded the chapter in Sect. 13.5.

13.2 The Core Services to Support e-Science Discovery

Nowadays, various services have been provided by the infrastructure to support
e-Science discovery. e-Science problems build upon increasingly growing scien-
tific data and require large-scale computational resources. Commonly, data and
computation resources are distributed in geographically sparse locations and have
a variety of usage modes. A typical computational experiment involves various
tasks. By providing pipeline tools to connect the tasks and automate their execu-
tion, scientific process automation is becoming increasingly important to help sci-
entists easily and efficiently utilize the data and computation resources to solve
their domain-specific scientific problems. The infrastructure for e-Science should
also enable scientists to interact with during the whole experiment lifecycle, such

2 http://www.globus.org/toolkit/
3 http://glite.web.cern.ch/glite/
4 http://www.unicore.eu/
5 http://kepler-project.org
6 http://www.ucgrid.org/

http://www.globus.org/toolkit/
http://glite.web.cern.ch/glite/
http://www.unicore.eu/
http://kepler-project.org
http://www.ucgrid.org/

35513 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

as triggering and adjusting the processes, monitoring their execution, and viewing
the resulting data. Furthermore, nonfunctional services, such as security and failure
recovery, are also important to ensure the whole process to be secure and fault toler-
ant. As shown in Fig. 13.1, computation management, data management, scientific
process automation, user interaction, and nonfunctional services are the core
service categories to support e-Science discovery. Also these services are comple-
mentary to each other, and are often integrated in many e-Science projects.

In this section, we describe the main services in each category, discussing their
purposes, challenges along with the approaches and tools to enable them.

13.2.1 Computation Management

Over the past decade, Grid computation techniques have been successfully used to
assist domain scientists with their scientific computational problems. Widely used
Grid software includes the Globus toolkit, gLite, Unicore, Nimrod/G,7 and
Condor-G.8 More details on Grid computation management can be found in [7, 8].

13.2.1.1 Service-Oriented Computation

A Web service is “a software system designed to support interoperable machine-to-
machine interaction over a network”.9 Original Web services, also called big Web

Fig. 13.1 A core service classification to support e-Science discovery

7 http://messagelab.monash.edu.au/NimrodG
8 http://www.cs.wisc.edu/condor/condorg/
9 http://www.w3.org/TR/ws-gloss/#webservice

http://messagelab.monash.edu.au/NimrodG
http://www.cs.wisc.edu/condor/condorg/
http://www.w3.org/TR/ws-gloss/#webservice

356 J. Wang et al.

services, are based on standards including XML, Web Service Definition Language
(WSDL), and Simple Object Access Protocol (SOAP). Another set of Web ser-
vices, called RESTful Web services, are simple Web services implemented based
on HTTP protocol and the principles of Representational State Transfer (REST)
[9]. Heterogeneous applications can be virtualized and easily interoperate with each
other at Web service level by following the standards and protocols. The Open Grid
Services Architecture [10] defines uniform exposed service semantics for Grid
components, called Grid services, such that Grid functionalities can be incorpo-
rated into a Web service framework.

Through the introduction of Web and Grid services, a large number of compu-
tational resources in different scientific domains, e.g., bioinformatics, are becoming
easily usable, and in turn introducing new challenges including service semantics,
discovery, composition, and orchestration [11].

13.2.1.2 Local Resource Management

A compute cluster resource is a collection of compute nodes connected through a
private fast interconnect fabric, e.g., Infiniband, Myrinet, or even local area network
(LAN), and operated by an organization such as a university. A local resource
manager is an application that is aware of the resources in a cluster and provides
an interface for users to access them. The job submission and execution on a cluster
is usually managed through resource manager software, such as the Torque,10 Sun
Grid Engine (SGE, renamed as Oracle Grid Engine recently),11 or Load Sharing
Facility (LSF).12 A resource scheduler, on the other hand, can simply allocate jobs
in a first in first out (FIFO) basis, or follow some complex scheduling algorithms
(e.g., preemption, backfilling, etc.) such as the Maui,13 Moab,14 or SGE scheduler.
A resource manager can use multiple schedulers. For example, Torque can be
integrated with either the Maui or Moab.

The cluster owner sets policies on resource consumption such as which groups
have access to it, how many resources can be allocated, whether they can run paral-
lel jobs or only serial jobs, etc. This information is fed into the resource manager
and is used when the scheduler executes jobs. A scheduler constantly monitors the
cluster status and recalculates job priorities according to changes in the cluster
environment.

Detailed techniques on local resource management can be found in [12, 13].

10 http://www.clusterresources.com/products/torque-resource-manager.php
11 http://www.sun.com/software/sge/
12 http://www.platform.com/workload-management
13 http://www.clusterresources.com/products/maui-cluster-scheduler.php
14 http://www.clusterresources.com/products/moab-cluster-suite.php

http://www.clusterresources.com/products/torque-resource-manager.php
http://www.sun.com/software/sge/
http://www.platform.com/workload-management
http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.clusterresources.com/products/moab-cluster-suite.php

35713 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

13.2.1.3 Resource Allocation

Resource allocation is the process of assigning resources associated with a Grid for
a user application. It is a key service since there are usually many available local
resources and many user applications to be executed within one Virtual Organization
(VO), where many different groups share resources through a collaborative effort.

One challenge here, called resource scheduling, is how to get a resource alloca-
tion result that satisfies user requirements, since resources in the Grid are not
exclusive and may meet competing user requirements. It is already proved that the
complexity of a general scheduling problem is NP-Complete [14]. So many approx-
imation and heuristic algorithms are proposed to achieve suboptimal scheduling on
the Grid [15]. Scheduling objectives are usually classified into application centric
and resource centric [15]. The former one targets the performance of each indi-
vidual application, such as makespan, economic cost, and quality of service (QoS).
The latter one targets the performance of the resource, such as resource utilization
and economic profit. Although it is an active research area, the proposed solutions
are not ready to be widely deployed in production environments and it is still com-
mon that users or communities provide their own simple resource allocation strate-
gies using Grid interfaces to contact each local resource.

13.2.2 Data Management

Data management on the Grid, sometimes called Data Grid, can be seen as a spe-
cialization and extension of the Grid as an integrating infrastructure for distributed
data management [16]. This includes data acquisition, storage, sharing, transfer,
archiving, etc. Representative Data Grid software includes the Globus toolkit,
OGSA-DAI,15 Storage Resource Broker (SRB),16 and its recent successor called
integrated Rule Oriented Data System (iRODS).17 More comprehensive scientific
data management and Data Grid surveys can be found in [16–20].

13.2.2.1 Data Acquisition

In general, scientific data may be created either from computations such as scientific
calculations and image processing, or through data collection instruments such as an
astronomy telescope, earthquake-monitoring devices, meteorology sensors, etc.

15 http://www.ogsadai.org.uk/
16 http://www.sdsc.edu/srb/index.php
17 https://www.irods.org/

http://www.ogsadai.org.uk/
http://www.sdsc.edu/srb/index.php
https://www.irods.org/

358 J. Wang et al.

Once the experimental data is collected, it needs to be stored and transferred to
the location where computing models can be run using that data to interpret the
relationship or predict future events. The data often need to be shared among many
researchers.

Data acquisition in large-scale observing systems, such as the National
Ecological Observatory Network (NEON),18 is an emerging application area. These
systems accommodate a broad spectrum of distributed sensors and continuously
generate very large amount of data in real-time. Heterogeneous sensor integration
[21] and data stream processing [22, 23] are two main challenges [24]. The details
of these two problems are not in the scope of this chapter.

13.2.2.2 Data Storage

Reliability, failover, and input/output (I/O) throughput are critical factors for large
datasets storage. Typical solutions include storing the data through RAID19 to
achieve storage reliability by providing redundancy, and employing distributed
parallel file systems using metadata tables, such as Lustre20 and Parallel Virtual File
System (PVFS)21 to get higher I/O throughput.

One challenge on the Grid is how to provide a logical and simple view for
researchers to access various types of geographically distributed data storage across
a Grid environment. This is commonly handled by data storage abstraction tech-
niques. For example, a logical data identifier, rather than its physical location, is
provided to users to realize uniformed and easy data access. One tool that provides
data abstractions is the SRB, which is a client-server middleware that provides a
uniform interface for connecting to heterogeneous federated data resources over a
network. The Replica Location Service (RLS)22 in the Globus toolkit also support
data abstraction. Additionally, both SRB and RLS support data replica functionality
to manage the multiple copies of the same data, which will get better response time
for user applications by accessing data from locally “cached” data stores.

13.2.2.3 Data Transfer

A data transfer moves data between two physical locations. It is necessary to share
data within the VO or realize better computation balance and performance.
Challenges here include performance, security, and fault tolerance.

18 http://www.neoninc.org/
19 http://en.wikipedia.org/wiki/RAID
20 http://www.lustre.org/
21 http://www.pvfs.org/
22 http://www.globus.org/toolkit/data/rls/

http://www.neoninc.org/
http://en.wikipedia.org/wiki/RAID
http://www.lustre.org/
http://www.pvfs.org/
http://www.globus.org/toolkit/data/rls/

35913 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

There are many data transfer tools, e.g., FTP (File Transfer Protocol), scp
(secure copy), GridFTP, SRB, and others. FTP [25] is one of the universally avail-
able file transfer application, which functions over a network using TCP/IP-based
communication protocol such as the current Internet. scp [26] is a simple shell com-
mand that allows users to copy files between systems quickly and securely. Using
the above two tools does not need the expertise in Grid systems. GridFTP is built
on top of FTP for usage in Grid computing with the data encryption through the
Globus Grid Security Infrastructure (GSI).23 Additionally, GridFTP can provide
third party transfer, parallel streams, and fault tolerance. The SRB also provides
strong security mechanisms supported by fine-grained access controls on data, and
parallel data transfer operations.

13.2.2.4 Metadata

Metadata is usually defined as “data about data,” which is regarded as “structured
data about an object that supports functions associated with the designated object”
[27]. Metadata is useful to understand, access, and query the designated object. The
metadata structures vary for different targets and usages [28]. Commonly used
metadata categories in e-Science projects consist of dataset metadata (size, creator,
format, access method, etc.), application metadata (applicable operation system
information, license, etc.), resource metadata (node number, CPU speed, memory
size, disk capacity, etc.), and workflow metadata (creator, language, etc.).

Semantics and ontology are more sophisticate techniques to describe and pro-
cess metadata [29]. A domain ontology represents the particular meanings of terms
as they apply to that domain. For example, the myGrid ontology helps the service
discovery and composition in bioinformatics domain [30].

13.2.3 Scientific Process Automation

Scientific workflows are a common solution to realize scientific process automation
[31, 32]. Workflow is a higher-level “language” in comparison to classic program-
ming languages, such as scripting and object-oriented languages. The advantages of
using workflow languages for scientific process include: (1) Many workflow systems
support intuitive process construction by “dragging and dropping” via a graphical
user interface (GUI). (2) The components or sub-workflows in workflow are easy to
share and reuse. (3) Many workflow languages support task parallelism intuitively
(see Sect. 13.2.3.2). (4) Workflow systems usually have built-in provenance support
(see Sect. 13.2.3.4). (5) Some workflow systems are able to dynamically optimize
process execution in Grid or other distributed execution environments.

23 http://www.globus.org/security/overview.html

http://www.globus.org/security/overview.html

360 J. Wang et al.

Widely used scientific workflow systems include Kepler, Pegasus,24 Taverna,25
Triana,26 ASKALON,27 and Swift.28 More detailed scientific workflow surveys can
be found in [5, 6, 31, 32].

13.2.3.1 Workflow Model

Although there are different languages for representing scientific workflows
[33–35], workflows commonly include three types of components: tasks, control
dependencies, and data dependencies [36]. For example, in Fig. 13.2, the tasks T2
and T3 will be executed under different conditions. Additionally, T4 needs to get
data from either T2 or T3 to start its execution.

The tasks in the scientific computation process need to follow certain depen-
dency logic to be executed. Usually the dependency logic can be described using
control flow, data flow, or a hybrid of both. In control flows, or control-driven
workflows, explicit control structures (including sequence, loop, condition, and
parallel) describe the dependency. In data flows, or data-driven workflows, data
dependencies describe the relationships among tasks. Two tasks are only linked if
the downstream task needs to consume data from the output of the upstream task.
The hybrid method uses both control and data dependencies to enable powerful and
easy logic description. Many scientific workflow systems, e.g., Kepler, Triana and
Taverna, use hybrid methods.

Fig. 13.2 An example workflow composed of tasks and dependencies

24 http://pegasus.isi.edu/
25 http://www.taverna.org.uk
26 http://www.trianacode.org
27 http://www.dps.uibk.ac.at/projects/askalon/
28 http://www.ci.uchicago.edu/swift/

http://pegasus.isi.edu/
http://www.taverna.org.uk
http://www.trianacode.org
http://www.dps.uibk.ac.at/projects/askalon/
http://www.ci.uchicago.edu/swift/

36113 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

13.2.3.2 Task Parallelism

Task parallelism occurs when the tasks in one workflow can execute in parallel,
providing a good execution performance. The task parallelism patterns can be clas-
sified into three basic categories: simple parallelism, data parallelism, and pipeline
parallelism [37]. Simple parallelism happens when the tasks do not have data
dependency in a data-driven workflow, or are in the same parallel control structure
in a control-driven workflow. Data parallelism describes parallel execution of mul-
tiple tasks while different tasks processing independently on different parts of the
same dataset. This employs the same principle as single instruction multiple data
(SIMD) parallelism [38] in computer architecture. Pipeline parallelism describes a
set of data that are processed simultaneously among a group of sequential tasks,
each task processing one or more data elements of the set.

The difference between data parallelism and pipeline parallelism is illustrated in
Fig. 13.3. In Fig. 13.3a, multiple instances of Task 1 can be executing in parallel,
each task consuming one-third of input data set, meanwhile other tasks have to wait
for their input data. In Fig. 13.3b, Task 1 can only consume one portion of all the
input data for each execution. After Task 1 finishes its processing on the initiate input
data, the output data of Task 1 will trigger the execution of its downstream tasks and
meanwhile Task 1 will continue to process its next input data. So all the tasks in the
Fig. 13.3 can be executing simultaneously, each processing its own data.

13.2.3.3 Workflow Scheduling

Workflow scheduling maps the tasks of a process and its data to proper computa-
tional resources, in order to meet expected performance, such as minimal execution

Fig. 13.3 Data and pipeline parallelism in workflow

362 J. Wang et al.

time. After scheduling, tasks in one workflow might be executed on many local
resources in parallel on the Grid.

Workflow scheduling belongs to the application-centric scheduling category of
resource allocation (see Sect. 13.2.1.3), and focuses on the scheduling of process-
based applications. Scheduling can be done either statically or dynamically based on
whether it is flexible to diverse resource environments. Many heuristic scheduling
approaches, such as genetic algorithm, are used to achieve suboptimal solutions
[39, 40]. The local computation resource capacity, its advanced reservation capability,
and real-time status are usually needed to make decisions during the scheduling.

13.2.3.4 Provenance Management

Provenance plays a critical role in scientific workflows, since it allows or helps
“determine the derivation history of a data product, starting from its original sources”
[41]. Comprehensive surveys on provenance management can be found in [41, 42].

A major challenge of provenance management in Grid environments is how to
efficiently store provenance information and easily query it in the future. There are
three typical approaches to collect the execution information for data provenance:
centralized, decentralized, and hybrid [43]. Centralized approach stores all data
generated during a workflow’s distributed execution in one centralized center.
However, storing the data content of all distributed nodes in a single, centralized
center is inefficient, especially when the dataset size is large. In a decentralized
approach, provenance data is stored on the local node when it is generated (i.e., no
data needs to move to a centralized center). While it is efficient to separate data storage
to each distributed node locally, it becomes difficult to query and integrate this data
in the future. In the hybrid approach, provenance data are stored locally in distributed
nodes, and a centralized provenance catalog is employed to maintain the metadata
and location information. After finding the needed data endpoint at the provenance
catalog, users can get the data content from the corresponding nodes. In the hybrid
approach, the burden for data transfer is reduced in comparison to the centralized
provenance system, and it is easier than the decentralized approach to do future
provenance tracking. Note that one risk in both decentralized and hybrid approaches
is that users may not be able to access the distributed nodes after the workflow execu-
tion, which is true when a resource is only open to some users for a limited time.

13.2.4 User Interaction

13.2.4.1 User Authentication

Grid credentials are commonly used to identify users to Grid resources. All certifi-
cate signing authorities (called CAs) need to have a policy to authenticate users
before they issue user credentials. A user requests a Grid certificate only once to be

36313 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

authorized to use Grid resources. In some organizations such as UC Grid, all users
can be positively identified as members of an organization using a Security
Assertion Markup Language (SAML)29 assertion from a Shibboleth Identity
Provider (IdP).30 Typically, IdPs will provide sufficient information to issue a Grid
credential such as first name, last name, unique identifier, e-mail address, etc.

Some CAs let users keep credentials in their custody whereas other organiza-
tions maintain them in a credential management server such as MyProxy.31 In the
latter case, the credentials never leave the signing machine and only the short-lived
credentials (called delegated proxy credentials) are provided to users. Users can
always check out credentials from those servers. The delegated proxy credentials
usually have a short lifetime of less than 8 h and will be destroyed when they expire.
Many CAs additionally have an annual renewal policy for their certificate, so when
users are no longer associated with the original project, their certificates can be
revoked. Their identities are published in a certificate revocation list, which is then
distributed to all organizations where their certificates are trusted.

13.2.4.2 Portal

A Grid portal is a web server that provides web interfaces to Grid services such as
job submission, file transfer, job status check, and resource information monitoring.
Some Grid portals provide generic capabilities that can be used by many types of
users whereas others, such as Science Gateways,32 typically target a specific com-
munity of users. A Grid portal stores user information such as login identifier, the
Grid resources the user is entitled to, the status of their submitted jobs, etc. When
users login to a portal, they are redirected to a credential management server, which
allows the portal to authenticate Grid services on behalf of the user through a del-
egated proxy credential. Since a Grid portal holds some information about the role
of the user, it can also authorize some Grid services such as job submission.

One challenge here is to allow users to access multiple distributed resources and
applications without separate authentications, which are usually supported by sin-
gle sign-on techniques. GridShib33 allows a portal to sign proxy certificates for the
uniquely identifying subject assertion from a federated single sign-on service such
as Shibboleth.34 Shibboleth implements a federated identity standard based on
SAML to provide identification and attributes of members in a federation. The
primary purpose of Shibboleth is to avoid multiple passwords for multiple applica-
tions, interoperability within and across organizational boundaries, and enabling
service providers to control access to their resources.

29 http://saml.xml.org/
30 http://shibboleth.internet2.edu/about.html
31 http://grid.ncsa.illinois.edu/myproxy/
32 https://www.teragrid.org/web/science-gateways/
33 http://gridshib.globus.org/
34 http://shibboleth.internet2.edu/

http://saml.xml.org/
http://shibboleth.internet2.edu/about.html
http://grid.ncsa.illinois.edu/myproxy/
https://www.teragrid.org/web/science-gateways/
http://gridshib.globus.org/
http://shibboleth.internet2.edu/

364 J. Wang et al.

13.2.4.3 Job Monitoring

Users often like to know the overall load status and availability of resources. They
also want to know the current execution status, e.g., which tasks are executing on
which computers with which data. Therefore, job monitoring services are also
important for user interaction.

Some general job status information can be retrieved when the job is submitted
to a Grid resource. For example, the Scheduler Event Generator (SEG) service in
the Globus toolkit gets the status of jobs such as pending, active, or done. The SEG
service queries local cluster resource managers such as SGE or PBS, and the job
status information can be retrieved through the command-line or optionally pulled
into a Grid portal or other GUI interfaces to display to users using a subscription
application programming interface (API).

To view overall job statistics, typically cluster monitoring systems such as
Ganglia35 or Nagios36 are deployed and display queue information, node informa-
tion, and the load on the cluster. A Grid monitoring service is also deployed to
collect information from each resource’s cluster monitoring tool, summarize it, and
display it. This provides overall Grid job statistics that can be used by managers to
ensure users’ needs are being met. Such services are typically modeled after the
Grid Monitoring Architecture [44], which was defined by Global Grid Forum. It
includes three main parts: (1) a producer, a process that produces events and imple-
ments at least one producer API; (2) a consumer, a process that receives events and
implements at least one consumer API; and (3) a registry, a lookup service that
allows producers to publish the event types and consumers to search them.
Examples of Grid monitoring tools include the Globus Monitoring and Discovery
Service (MDS).37

13.2.4.4 Data Visualization

Data visualization is the creation of a visual representation of data, meaning “infor-
mation which has been abstracted in some schematic form, including attributes or
variables for the units of information” [45]. Through the presentation of visualized
data, it is easy for scientists to study, analyze, and communicate with one another.
The primary reference model is called the filter-map-render pipeline [46]. The filter
stage includes data selection, extraction, and enrichment; the map stage applies a
visualization algorithm to generate a viewable scene; and finally the render stage
generates a series of images from the logical scene. To optimize the performance
of data visualization, especially for large data set, many parallel visualization algo-
rithms have been developed [47–49].

35 http://ganglia.sourceforge.net/
36 http://www.nagios.org/
37 http://www.globus.org/toolkit/mds/

http://ganglia.sourceforge.net/
http://www.nagios.org/
http://www.globus.org/toolkit/mds/

36513 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

13.2.5 Nonfunctional Services

We categorize a service to be “nonfunctional” if it is not usually explicitly used by
users, but useful to ensure a certain property of the e-Science discovery, such as
security. These services are often transparently provided in the whole lifecycle of
user usage. These services are also orthogonal to other services in that they can be
integrated with each of them.

13.2.5.1 Security

Several security concerns in specific services have been discussed in Sects. 13.2.2.3
and 13.2.4.1. A key challenge of security management in Grid environments is that
there is no centrally managed security system [50]. The GSI provides secure com-
munication through authenticated services among resources and is widely used in
many Grid systems and projects. It operates on the single sign-on concept; that is,
a single user credential will be valid among multiple organizations that trust the
certificate authority (CA) of that credential. In GSI, every user needs to have a pair
of X509 certificates. One is the private key that is used to encrypt the data, and the
other is public key that is used to decrypt the data once it reaches the target
resource. This kind of process is called asymmetric encryption because the keys
that encrypts and decrypts are not the same. In practice, all Grid communications
including GridFTP use short-lived proxy certificates that allow the process to act
on behalf of the user. The bearer of this proxy certificate has exactly the same capa-
bilities as the original X-509 certificate holder until the proxy certificate expires. In
a Grid infrastructure, these proxy certificates are often leased from a certificate
management server, such as MyProxy. The advantage of having proxy certificates
is that a Grid user can securely store the long-lived private key in a secure machine
and release only short-lived proxy credentials on a publically accessible certificate
management server during Grid computing.

13.2.5.2 Failure Recovery

Due to the large number of resources in a Grid, there is a high probability of a
single resource component failure during an application execution. Further, provid-
ing fault tolerance in a Grid environment can be difficult since resources are often
distributed and under different administrative domains. Failures may occur in every
level in the Grid architecture [51], which includes: (1) computational platforms,
e.g., selected nodes for a job may run out of memory or disk space while the job is
still running; (2) network, e.g., a local resource is temporarily unreachable during
job execution; (3) middleware, e.g., a Grid service fails to start the job; (4) applica-
tion services, e.g., domain-specific application gets an execution exception due to
unexpected input; (5) workflow system, e.g., infinite loops during workflow execu-
tion; or (6) user, e.g., a user credential expires during workflow execution.

366 J. Wang et al.

Many of these issues fall into the domain of system and network administrators,
who must design infrastructure to provide redundant components. Here, we address
only parts at the workflow level, where redundancy, retry, and migration are the
main fault tolerance policies. Using simultaneous execution on redundant resources,
workflow execution will have a lower chance to fail. The workflow system can also
retry a failed resource or service after a certain amount of time. In migration, a
workflow system will restart on a different resource. For the latter two cases, check-
point and intermediate data usually need to be recorded so that only a sub-workflow
rather than the whole workflow will be re-executed.

13.3 Integrating the Kepler Workflow System
in the University of California Grid

To demonstrate how the services in Sect. 13.2 can be seamlessly assembled, Kepler
scientific workflow system is integrated into the UC Grid. The interoperation of
these services and the characteristics of our integration will be discussed. We will
also demonstrate how the capabilities of Kepler, including resource consolidation,
task parallelism, provenance tracking, fault tolerance, and workflow reuse, can
facilitate UC Grid on scientific process automation. Almost all the implementations
in this architecture are open source or follow open standards.

13.3.1 University of California Grid

The UC Grid is a federation of all participating compute resources among UC
campuses. Any organization that is willing to accept or follow the established poli-
cies and trust relations of UC the Grid policy management authority can also be an
autonomous member of UC Grid. Typically, the UC Grid resources are open to all
faculty, staff, and students who are members of any UC campus. The owners of the
resources determine when and how much of those resources are allocated to the UC
Grid resource pool.

As shown in Fig. 13.4, the UC Grid architecture mainly consists of four parts.

The UC Grid campus portal. This is the web interface, front-end to the UC Grid
in a single campus. It provides the user interface and serves as a single point of
access for users to all campus computing resources. It communicates with the Grid
appliances in a single campus. Because the users are known only at the campus
level, all applications for a Grid account starts at the campus portal. The campus
portal takes the request from the users and authenticates them through a Shibboleth-
based campus service, and if the authentication process is successful, it sends a
request to the UC Grid portal to sign an X-509 certificate for the user.

36713 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

The UC Grid portal. This is the web interface where users can login to access all
the clusters in all ten campuses of the University of California. This is the super
portal of all campus Grid portals and issues certificates for the entire UC Grid
through the UC Grid CA. Once issued to a user, a certificate is pushed to the UC
Grid MyProxy server that leases a corresponding short-lived credential every time
the user logs in to the Grid portal. Any resource updates on campus portal will be
updated on the UC Grid portal immediately through a Web service.

The UC MyProxy server. The primary purpose of this server is to store user cre-
dentials and release them to the UC Grid portal when users login to the portal.

Grid appliance nodes. These nodes are functionally equivalent to head nodes of a
compute cluster where the UC Grid portal software is deployed. These nodes need
to be open only to the Grid portals and compute nodes inside the cluster.
Additionally, these nodes need to be a job submission host to the local scheduler
such as Torque, LSF, or SGE.

The UC Grid is based on Globus toolkit 4.0.7, using its GridFTP, GRAM,
MyProxy, and MDS services. We have also implemented several services to meet
our own requirements. Two important ones are the UC Sync Service and the UC
Register Service. The UC Sync Service makes sure all database on both the campus
portal and UC wide portal are synchronized so that they have updated user, cluster,
and application information. The UC Register Service is an automated process to
authenticate, authorize, and issue credentials for new users on the UC Grid portal.
For authentication purpose, it relies either on a Shibboleth-based service or, in the
absence of such services, make use of a secure shell (SSH) based authentication
mechanism. During the authorization process, a cluster administrator has to verify
the Unix user identifier of new user on a cluster.

The UC Grid portal consists of application software that runs a portlet that is
pluggable user-interface components in a portal to provide services such as Grid
services. We employ Gridsphere38 as our portlets container, which guarantees
interoperability among portlets and portals through standard APIs.

Fig. 13.4 The architecture of University of California Grid

38 http://www.gridsphere.org

http://www.gridsphere.org

368 J. Wang et al.

The usage modes are quite different for users who already have access to some
compute clusters and users who do not have access to any clusters. So users are
classified into different user categories in the UC Grid: cluster user and pool user.
Cluster users are those users with a Unix user identifier on one of the clusters who
can access their resources directly without the Grid portal web interface. Pool users
on the other hand are those users who do not have an account on any of the clusters
or on the cluster where they want to run an application. The jobs submitted by pool
users are run through guest accounts on all participating clusters when unused cycles
are available on that cluster. Pool users can access the resources only by authorizing
through their Grid credentials. Currently, pool users can only submit precompiled
application jobs that are deployed in advance by the cluster administrator, as the
Grid portal does not have a mechanism to allow the pool users to upload their own
binary files and guarantee the right run time architecture for that job. Some of the
applications that pool users regularly use are Mathematica, Matlab, Q-Chem,
NWChem, Amber, CPMD, etc. Typically, pool users need not worry about the
target cluster as it is determined by the Grid portal depending on the dynamic
resource availability, and also the application availability on any of the clusters.

13.3.2 Kepler Scientific Workflow System

The Kepler project aims to produce an open source scientific workflow system
that allows scientists to easily design and efficiently execute scientific workflows.
Inherited from Ptolemy II,39 Kepler adopts the actor-oriented modeling [52] paradigm
for scientific workflow design and execution. Each actor is designed to perform
a specific independent task that can be implemented as atomic or composite.
Composite actors, or sub-workflows, are composed of atomic actors bundled
together to perform complex operations. Actors in a workflow can contain ports to
consume or produce data, called tokens, and communicate with other actors in the
workflow through communication channels via links.

Another unique property inherited from Ptolemy II is that the order of execution
of actors in the workflow is specified by an independent entity called director. The
director defines how actors are executed and how they communicate with each
other. Since the director is decoupled from the workflow structure, a user can easily
change the computational model by replacing the director using the Kepler graphi-
cal user interface. As a consequence, a workflow can execute sequentially, e.g.,
using the Synchronous Data Flow (SDF) director, or in parallel, e.g., using the
Process Network (PN) director [53].

Kepler provides an intuitive graphical user interface and an execution engine to
help scientists to edit and manage scientific workflows and their execution. In the
Kepler GUI, actors are dragged and dropped onto the canvas, where they can be

39 http://ptolemy.eecs.berkeley.edu/ptolemyII

http://ptolemy.eecs.berkeley.edu/ptolemyII

36913 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

customized, linked, and executed. Further, the Kepler execution engine can be
separated from the user interface, thereby enabling the batch mode execution.

Currently, there are over 200 actors available in Kepler, which largely simplify
the workflow composition. We will briefly describe the main distinctive actors that
are used in this chapter.

Local execution actor. The External Execution actor in Kepler is the wrapper for
executing commands that run legacy codes in a workflow. Its purpose is to call the
diverse employed external programs or shell-script wrappers.

Job submission actors. Kepler provides two sets of actors that can submit jobs to
two typical distributed resources: Cluster and Grid. Each set has actors to be used
for different job operations, e.g., create, submit, and status check.

Data transfer actors. There are multiple sets of data transfer actors in Kepler to
support moving data from one location to another by different ways, e.g., FTP,
GridFTP, SRB, scp, and others.

Fault tolerance actor. An actor, called contingency actor, is provided in Kepler to
support fault tolerance for workflow execution [54]. This actor is a composite actor
that contains multiple sub-workflows, and supports automatic exception catching
and handling by re-trying the default sub-workflow or executing the alternative
sub-workflows.

Besides the above actors, Kepler also provides the following characteristic
capabilities.

Inherent and implicit parallelism. Kepler supports inherent and implicit parallelism
since it adopts a dataflow modeling approach [55]. Actors in Kepler are independent
from each other, and will be triggered once their input data are available. Kepler
workflow execution engine will parallelize actor execution automatically at runtime
according to their input data availability. In addition, workflow composition in Kepler
can be greatly simplified, since explicit parallel primitives, such as parallel-for, are
not needed.

Pipeline parallelism. The execution of the tokens in the token set can be indepen-
dent and parallel. Kepler supports pipeline parallelism by token streaming, block-
ing, and buffering techniques [37].

Provenance tracking. Kepler provenance framework [56] supports collection and
query on workflow structure and execution information in both local and distrib-
uted environments [57].

13.3.3 Integrated Architecture

By integrating Kepler into UC Grid, an overall architecture is presented in Fig. 13.5.
Most of the services described in Sect. 13.2 are supported here.

370 J. Wang et al.

13.3.3.1 Portal Layer

The portal layer mainly provides the user interaction services described in
Sect. 13.2.4 to enable users to interact with cyberinfrastructure and accomplish
their e-Science discoveries.

User authentication. In order for the Grid portal to execute Grid services on behalf
of users, it must be provided with a delegated credential from a credential manage-
ment server (MyProxy server is used here). When users login to the portal, they
enter their username and corresponding MyProxy password. The portal will retrieve
and store the short-lived delegation credentials so that users can interact with Grid
services. When the users log out, the delegated credentials are destroyed.

Workflow submission. Users select a workflow by browsing the workflow reposi-
tory in the Grid portal. The Grid portal then presents a web interface for users to
configure the workflow parameters and upload the required input files that need to
be staged on the target computing resources. Users are also allowed to upload their
own workflows to the portal, but require authorization to avoid intentional or unin-
tentional security problems. For example, malicious code might be inserted into a
workflow by executing file delete commands in the Kepler External Execution
actor. Once approved, the workflow is uploaded to the workflow repository and
made available to other users through the Grid portal.

Workflow monitoring. After a workflow is submitted through the Globus GRAM
service for execution, the portal will monitor the progress and completion of the
workflow execution by querying the Globus SEG service running on the target
resource. Users can log in anytime to check the status, or the portal will send a
notification e-mail when the execution is done.

Data visualization. Users can either download the output data to their local com-
puter to visualize the data locally or choose one of the deployed application visual-
ization services, e.g., Jmol,40 to visualize the data through the portal itself.

Fig. 13.5 A layered architecture to facilitate e-Science discovery

40 http://jmol.sourceforge.net/

http://jmol.sourceforge.net/

37113 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

Provenance query. During and after workflow execution, users can check prove-
nance information via the query user interface in the portal. The query can utilize
the provenance information from all previous workflow runs. For example, a user
may want to understand how a parameter change influenced the results of one
workflow, or how workflows are connected by a certain dataset.

13.3.3.2 Workflow Layer

The workflow layer provides the scientific process automation services described
in Sect. 13.2.3.

Workflow scheduler. Currently, static workflow scheduling is supported by explicitly
describing the scheduling policy in a separate workflow. Globus GRAM jobs are
sub mitted through the workflow to initiate workflow task execution on resources.
For workflow task execution on remote resources, data needs to be staged in before
execution and staged out after execution. The capabilities of the resources must be
known to achieve better overall load balancing. Sophisticated dynamic workflow
scheduling capability is being studied as future work, such as optimal input data
distribution on multiple resources based on the resources’ capability and real-time
load status.

Workflow execution engine. Once an invocation request is received from the
workflow scheduler along with the corresponding workflow specifications, the
workflow execution engine will parse the specification, and execute the actors
based on their dependencies and director configuration.

Provenance recorder. During workflow execution, the provenance recorder listens
to the execution messages and saves corresponding information generated by the
workflow execution engine, such as an actor execution time and its input/output
contents. It also saves a copy of the workflow for future verification and re-submis-
sion. The provenance will be stored locally and optionally merged into a centralized
provenance database upon the workflow execution completion.

Fault tolerance manager. The fault tolerance manager will be triggered by exception
messages generated from workflow execution engine, and will check whether the source
of the exception is contained within a Contingency actor. If so, the alternative sub-
workflows defined in the Contingency actor will be invoked with the corresponding
configuration policy. Otherwise, the exception will be passed to the next higher-level
Contingency actor, until the top level of the workflow is reached, where the workflow
execution failure message will be reported and workflow execution will stop.

13.3.3.3 Grid Layer

The Grid layer consolidates multiple resources and manages their computation
and data resources, providing unified services for the portal and workflow layer.

372 J. Wang et al.

This layer is where the Globus toolkit software, such as GRAM, GridFTP, and
MyProxy Server, is located.

User certificate management. There should be at least one CA, which stores the
long-lived credentials for users. The short-lived credentials are then pushed into a
MyProxy server. The portal gets the delegated credential when users login to the
portal. A workflow can also get the delegated credential through a MyProxy actor.

Grid job submission. A GRAM service will enable job submission on any
accessible resources. A workflow execution can invoke multiple GRAM services
on different resources to realize parallel computation.

Data transfer. GridFTP permits direct transfer of files between the portal and the
cluster resources or vice versa. Third party transfers can also be made between
two local resources. A GridFTP actor is used to transfer data during workflow
execution.

13.3.3.4 Local Resource Layer

The services provided by each compute cluster resource are located in the local
resource layer. The compute nodes are not accessible directly from a portal. UC
Grid communicates with the cluster through its Grid Appliance Node (see its details
at Sect. 13.3.1) with both public and private interfaces.

Batch scripts. The batch job script syntax and terminologies vary according to
the type of scheduler. The Globus GRAM service executes a job manager service
at the target to create the job submission script using information such as executable
name, number of processors, memory requirement, etc. It is also useful to create “shims”
in the workflow [58], such as creating job scripts in accordance with the scheduler
configuration of the host cluster.

Data storage. Each cluster provides data storage service for their users up to a
certain size limitation. Cluster users can store their data permanently on the clus-
ters they can access, whereas pool users must save their data in portal provided
storage servers. The data generated on the cluster by pool users must be down-
loaded; otherwise, the data gets cleaned up periodically to make room for other
pool users.

Local resource manager. A local resource manager is used to manage the job sub-
mission in a cluster. Several local resource managers are supported by the GRAM,
such as SGE and PBS, which schedule jobs to the nodes in the cluster.

Domain-specific programs. Domain-specific programs are deployed to clusters to
accomplish certain domain-specific computation problems. The applications
widely used in UC Grid include Mathematica, Matlab, Q-Chem, NWChem, Amber,
CPMD, etc.

37313 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

13.4 Application in Computational Chemistry

In this section, we demonstrate how the services and integrated architecture
described in Sects. 13.2 and 13.3 can facilitate e-Science discovery by applying
them to a challenging application in computational chemistry. The detailed infor-
mation about the application can be found at [59].

13.4.1 Theoretical Enzyme Design Process

Enzymes are nature’s protein catalysts that accelerate and regulate all metabolic
reactions. To design new catalysts computationally and then to make them with
molecular biological techniques will be a breakthrough in technology. An inside-
out design approach has been developed [60]. In the process, quantum mechanical
calculations give a theozyme [61], or theoretical enzyme, which is theoretical opti-
mum catalyst. Numerous protein scaffolds are then screened to determine which
can be used to display the side chains to mimic the geometry of the theozyme; this
procedure generates a large library of potential catalysts that are evaluated for fidel-
ity to the theozyme. The best of these are subjected to mutations to obtain a design
that will both fold and catalyze the reaction. Typically, a theozyme with active sites
is matched at least once per scaffold (226 protein scaffolds so far) to potentially
accommodate the orientation of the model functional groups. The computation
process needs to be repeated for many times with different theozymes and calcula-
tion options. The goal of this application is to accelerate and facilitate this impor-
tant computation- and data-intensive process for chemists.

13.4.2 Conceptual Enzyme Design Workflow

As shown in Fig. 13.6, the conceptual enzyme design workflow takes quantum
mechanical theozymes as inputs, and goes through three discrete steps before vali-
dation by experiments. The goal of this workflow is to standardize the enzyme
design process through automation, and eliminate the need for unnecessary human
interaction. Sequences of tasks in the enzyme design process are repeated using the
same series of programs, which must be executed to design and evaluate an enzyme

Fig. 13.6 Conceptual workflow of enzyme design process

374 J. Wang et al.

for a new chemical reaction. For example, a theozyme with active sites is matched
at least once per scaffold to potentially accommodate the orientation of the model
functional groups.

Computational methodology for enzyme design has been developing using
quantum mechanics and molecular dynamics. We locate structures of catalytic sites
(theozyme) for the aromatic Claisen rearrangement of an allyl coumarin ether using
density functional theory. The resultant theozymes are incorporated into existing
stable protein scaffolds using the Rosetta programs of Zanghellini et al. [60]. The
residues in the vicinity of active site are then optimized with RosettaDesign [62, 63].
The designs are further evaluated using molecular dynamics.

The entire enzyme design process can be performed independently for different
scaffolds, and the total computation time for each scaffold can vary. The number of
matches per theozyme is about 100–4,000, and computation time for a single scaf-
fold on one CPU core is usually 1–3 h. The number of enzyme designs generated
by RosettaDesign per match is about 100–15,000, and computational time on one
CPU core is usually 0.5–2 h. One whole computation time required for all 226 scaf-
folds could take months on one single CPU core and the total number of generated
enzyme designs is about seven million.

13.4.3 Enzyme Design Workflow in Kepler

The conceptual enzyme design workflow in Sect. 13.4.2 is composed in Kepler to
make it executable. We will explain the details of the composition in this section.

13.4.3.1 Workflow for Execution on Local Cluster Resources

As shown in Fig. 13.7, a workflow is implemented to utilize the tens to hundreds
of computing CPU cores in one cluster. The top-level workflow structure is the
same as the conceptual workflow in Sect. 13.4.2. The connection links between the
actors describe their dependencies, which determine that each input data, namely
each scaffold, has to go through the three processing tasks sequentially. Once the
output data of one actor is generated, it will trigger the execution of downstream
actors. For instance, the RemoveBChain actor will start processing once it gets
output data from the RosettaMatch actor.

Inside a composite actor, such as RosettaMatch, the sub-workflow dynamically
creates job scripts according to a user’s inputs and submits them to a job scheduler
such as SGE on the cluster using Kepler job actors. By distributing the jobs for all
scaffolds through the job scheduler on the cluster, the jobs can be concurrently
executed on many nodes on the cluster and the concurrency capability is limited
only by the node capacity of the cluster.

One computational characteristic in the enzyme design process is that the execu-
tion time for different scaffolds varies greatly, which could be minutes or hours.

37513 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

Therefore, we adopt a set as the input of the workflow and elements of the input
sets will be processed independently. With pipeline parallel support in Kepler, one
scaffold does not need to wait for the completion of the other scaffolds before being
processed by the downstream tasks.

13.4.3.2 Workflow for Execution on UC Grid

By adopting Globus as the Grid security and service infrastructure, the workflow
shown in Fig. 13.8 is used to scheduling application execution among two cluster
resources in UC Grid. For a local cluster, we execute the Kepler workflow
shown in Fig. 13.7 through the Globus GRAM service deployed on the cluster.

Fig. 13.8 Kepler workflow for enzyme design processes on UC Grid. The GRAM service actor
will invoke the workflow shown in Fig. 13.7 on the target cluster

Fig. 13.7 Kepler workflow for enzyme design processes on one cluster

376 J. Wang et al.

For the remote cluster, besides the workflow execution, two extra tasks need to be
added: (1) Input data needs to be staged in to the remote clusters in advance of the
workflow execution. (2) Output data needs to be staged out from remote cluster
back to the local cluster. We employ the GridFTP to do the data stage in and out.
The computations on the two clusters are independent of each other, so there is no
control or data flow connections among the actors for these executions in the work-
flow, and the Kepler engine will run them in parallel. The workflows in Sect. 13.4.3.1
are easily reused in the two-level workflow structure. One challenge for this
workflow is how to optimize the load balance on multiple clusters and the data
stage in/out overhead.

13.4.3.3 Provenance and Fault Tolerance Support in the Workflow

While using more clusters increases computational capacity, it also increases
the probability of failure. Although these exceptions happen only occasionally, the
whole execution of the enzyme design workflow will crash without fault tolerance
support.

To support fault tolerance at the workflow level, we adopt the Contingency actor
for some sub-workflows. A simplified example is shown in Fig. 13.9, where the
JobExecutionWithFT actor is a customized Contingency actor. There are two
sub-workflows (shown in the bottom part of Fig. 13.9) in the actor, namely default
and clean-and-quit, which will be invoked according to the configurations of the
JobExecutionWithFT actor. The default sub-workflow submits a job, checks the job
status, and throws an exception if the job fails. As specified in its con figuration

Fig. 13.9 Fault tolerance and provenance support in Kepler workflow

37713 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

(shown in the right part of Fig. 13.9), after catching the exception, the
JobExecutionWithFT actor will re-execute the default sub-workflow after sleeping
for 100 s. If the default sub-workflow still gets exceptions after three retries, the
clean-and-quit sub-workflow, which cleans intermediate data and stops the whole
execution, will be executed with the same input tokens.

The exception handling logic can be easily expressed with the Contingency
actor; no explicit loop and conditional switch is needed in the workflow. Further,
the input data for sub-workflow retry does not need to be explicitly saved since they
are automatically recorded by the provenance recorder and will be fetched for
re-execution.

Besides fault tolerance, Kepler provenance also supports collection and query
on workflow structure and execution information in both local and distributed
environments. Each enzyme design workflow execution will generate millions of
designs, and chemists may need the workflow to be executed many times with
different input models. Kepler provenance can help chemists to track the data
efficiently in the future, such as querying which input model was used to generate
one particular design.

13.4.4 Experiment

To measure the speedup capabilities of the workflows, we chose two clusters in UC
Grid as test bed where Globus toolkit 4.0.7 and Sun Grid Engine job scheduler are
deployed. Cluster 1 has 8 nodes, each with 24 GB of memory and two 2.6 GHz
quad-core CPUs. Cluster 2 has 30 nodes, each with 4 GB of memory and two
2.2 GHz single-core CPUs.

Our first experiment executed the enzyme design workflow described in
Sect. 13.4.3.1 on cluster 2 with different usable CPU core configurations. We also
executed another workflow that only had the RosettaMatch part of the enzyme
design workflow in order to determine the speedup difference. We ran the work-
flows with different inputs. As shown in Table 13.1, all these tests, no matter the
differences of workflow structures and inputs, have good scalability and speedup
when the usable core number grows.

Table 13.1 Workflow execution on one local resource with different CPU cores

Workflow
Workflow
input

Output
data

Total
job
number

Workflow execution
time (unit: hour)

1 core 25 core 60 core

RosettaMatch 10 scaffold 0.29 GB 10 3.38 0.69 0.63
RosettaMatch 226 scaffold 27.96 GB 226 128.61 5.52 3.06
RosettaMatch +

RemoveBChain + RosettaDesign
 10 scaffold 10.92 GB 296 533.61 29.32 11.24

378 J. Wang et al.

We also tested the workflows in Sects. 13.4.3.1 and 13.4.3.2 to know the concur-
rence performance on the Grid which is shown in Table 13.2. From the experiment
data of the workflow execution only on cluster 1 and 2 (listed at the fourth and fifth
column of Table 13.2), we know cluster 1 is about twice as fast. So approximately
twice as many inputs are distributed to cluster 1 and cluster 1 is set as the local
cluster when the workflows are executed on the two clusters, and its experiment
results are listed at the sixth column. The experiment data demonstrates the good
concurrence performance in the second and third tests. The poor performance
in the first test is because there are too few jobs in comparison to the number of
CPU cores. We can also see the speedup ratios are not as good as those in the first
experiment. The reasons are twofold: (1) It is hard to realize good load balance on
multiple clusters since the execution time for different scaffold varies. (2) The data
stage in and out phases for remote cluster may cause a big overhead if the size of
transferred data is very large.

13.5 Conclusions

Increasingly e-Science discoveries are being made based on the enhanced capability
and usability of cyberinfrastructure. In this chapter, we have summarized the core
services to support e-Science discovery in Grid environments. The five service
dimensions, namely computation management, data management, scientific process
automation, user interaction, and nonfunctional services, are all important con-
stituents and complementary to each other. To demonstrate how these services
can be seamlessly assembled, we explained an integration of the Kepler workflow
system with the UC Grid, and its application in computational chemistry. The
implementation and experiments validate the capability of this integrated archi-
tecture to make a scientific computation process automated, pipelined, efficient,
extensible, stable, and easy-to-use. We believe that, as the complexity and size of
scientific problems grow larger, it is increasingly critical to leverage workflow logic
and task distribution across federated computing resources to solve e-Science
problems efficiently.

Table 13.2 Workflow execution on UC Grid with different local resources

Workflow
Workflow
input

Total job
number

Workflow execution time
(unit: hour)

Cluster 1
(64 core)

Cluster 2
(60 core)

Cluster
1 and 2

RosettaMatch 10 scaffold 10 0.33 0.63 0.36
RosettaMatch 226 scaffold 226 1.52 3.06 1.33
RosettaMatch +

RemoveBChain + RosettaDesign
 10 scaffold 296 6.17 11.24 4.21

37913 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

Acknowledgments The authors would like to thank the rest of the Kepler and UC Grid com-
munity for their collaboration. We also like to explicitly acknowledge the contribution of Tajendra
Vir Singh, Shao-Ching Huang, Sveta Mazurkova, and Paul Weakliem during the UC Grid archi-
tecture design phase. This work was supported by NSF SDCI Award OCI-0722079 for Kepler/
CORE, NSF CEO:P Award No. DBI 0619060 for REAP, DOE SciDac Award No. DE-FC02-
07ER25811 for SDM Center, and UCGRID Project. We also thank the support to the Houk group
from NIH-NIGMS and DARPA.

References

 1. Foster I (2002) What is the Grid? – a three point checklist. GRIDtoday, Vol. 1, No. 6. http://
www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

 2. Sudholt W, Altintas I, Baldridge K (2006) Scientific workflow infrastructure for computa-
tional chemistry on the Grid. In: Proc. of the 1st Computational Chemistry and Its Applications
Workshop at the 6th International Conference on Computational Science (ICCS 2006):69–76,
LNCS 3993

 3. Tiwari A, Sekhar AKT (2007) Workflow based framework for life science informatics.
Computational Biology and Chemistry 31(5–6):305–319

 4. Yang X, Bruin RP, Dove MT (2010) Developing an End-to-End Scientific Workflow: a Case
Study of Using a Reliable, Lightweight, and Comprehensive Workflow Platform in e-Science.
Computing in Science and Engineering, 12(3):52–61, May/June 2010, doi:10.1109/
MCSE.2010.61

 5. Taylor I, Deelman E, Gannon D, Shields M (eds) (2007), Workflows for e-Science. Springer,
New York, Secaucus, NJ, USA, ISBN: 978-1-84628-519-6

 6. Yu Y, Buyya R (2006) A Taxonomy of Workflow Management Systems for Grid Computing.
J. Grid Computing, 2006 (3):171–200

 7. Foster I, Kesselman C (eds) (2003) The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, The Elsevier Series in Grid Computing, ISBN 1558609334,
2nd edition

 8. Berman F, Fox GC, Hey AJG (eds) (2003) Grid Computing: Making The Global Infrastructure
a Reality. Wiley. ISBN 0-470-85319-0

 9. Richardson L, Ruby S (2007) RESTful Web Services. O’Reilly Media, Inc., ISBN: 978-0-
596-52926-0

 10. Foster I, Kesselman C, Nick J, Tuecke S (2002) The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. www.globus.org/research/papers/
ogsa.pdf

 11. Singh MP, Huhns MN (2005) Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons

 12. Buyya R (ed.) (1999) High Performance Cluster Computing: Architectures and Systems.
Volume 1, ISBN 0-13-013784-7, Prentice Hall, NJ, USA

 13. Buyya R (ed.) (1999) High Performance Cluster Computing: Programming and Applications.
Volume 2, ISBN 0-13-013785-5, Prentice Hall, NJ, USA

 14. El-Rewini H, Lewis TG, Ali HH (1994) Task Scheduling in Parallel and Distributed Systems,
ISBN: 0130992356, PTR Prentice Hall

 15. Dong F, Akl SG (2006) Scheduling Algorithms for Grid Computing: State of the Art and
Open Problems. Technical Report No. 2006-504, Queen’s University, Canada, http://www.
cs.queensu.ca/TechReports/Reports/2006-504.pdf

 16. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2000) The data Grid: Towards
an architecture for the distributed management and analysis of large scientific datasets.
Journal of Network and Computer Applications. 23(3): 187–200. July 2000, doi:10.1006/
jnca.2000.0110

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf

380 J. Wang et al.

 17. Gray J, Liu DT, Nieto-Santisteban M, Szalay A, DeWitt DJ, Heber G (2005) Scientific
data management in the coming decade, ACM SIGMOD Record, 34(4):34–41,
doi://10.1145/1107499.1107503

 18. Shoshani A, Rotem D (eds) (2009) Scientific Data Management: Challenges, Existing
Technology, and Deployment, Computational Science Series. Chapman & Hall/CRC

 19. Moore RW, Jagatheesan A, Rajasekar A, Wan M, Schroeder W (2004) Data Grid Management
Systems. In Proc. of the 21st IEEE/NASA Conference on Mass Storage Systems and
Technologies (MSST)

 20. Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of Data Grids for distributed
data sharing, management, and processing. ACM Comput. Surv. 38(1)

 21. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Computer Networks,
52(12): 2292–2330, DOI: 10.1016/j.comnet.2008.04.002.

 22. Fox G, Gadgil H, Pallickara S, Pierce M, Grossman RL, Gu Y, Hanley D, Hong X (2004) High
Performance Data Streaming in Service Architecture. Technical Report. http://www.hpsearch.
org/documents/HighPerfDataStreaming.pdf

 23. Rajasekar A, Lu S, Moore R, Vernon F, Orcutt J, Lindquist K (2005) Accessing sensor data
using meta data: a virtual object ring buffer framework. In: Proc. of the 2nd Workshop on Data
Management for Sensor Networks (DMSN 2005): 35–42

 24. Tilak S, Hubbard P, Miller M, Fountain T (2007) The Ring Buffer Network Bus (RBNB) Data
Turbine Streaming Data Middleware for Environmental Observing Systems. eScience 2007:
125–133

 25. J. Postel and J. Reynolds, File Transfer Protocol (FTP), Internet RFC-959 1985
 26. secure copy, http://linux.die.net/man/1/scp
 27. Greenberg J (2002) Metadata and the World Wide Web. The Encyclopedia of Library and

Information Science, Vol.72: 224–261, Marcel Dekker, New York
 28. Wittenburg P, Broeder D (2002) Metadata Overview and the Semantic Web. In Proc. of the

International Workshop on Resources and Tools in Field Linguistics
 29. Davies J, Fensel D, van Harmelen F. (eds.) (2002) Towards the Semantic Web: Ontology-

driven Knowledge Management. Wiley
 30. Wolstencroft K, Alper P, Hull D, Wroe C, Lord PW, Stevens RD, Goble C (2007) The myGrid

Ontology: Bioinformatics Service Discovery. International Journal of Bioinformatics
Research and Applications, 3(3):326–340

 31. Ludäscher B, Altintas I, Bowers S, Cummings J, Critchlow T, Deelman E, Roure DD, Freire
J, Goble C, Jones M, Klasky S, McPhillips T, Podhorszki N, Silva C, Taylor I, Vouk M (2009)
Scientific Process Automation and Workflow Management. In Shoshani A, Rotem D (eds)
Scientific Data Management: Challenges, Existing Technology, and Deployment,
Computational Science Series. 476–508. Chapman & Hall/CRC

 32. Deelman E, Gannon D, Shields MS, Taylor I (2009) Workflows and e-Science: An overview
of workflow system features and capabilities. Future Generation Comp. Syst. 25(5): 528–540

 33. Brooks C, Lee EA, Liu X, Neuendorffer S, Zhao Y, Zheng H (2007), Chapter 7: MoML,
Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy
II), EECS Department, University of California, Berkeley, UCB/EECS-2007-7, http://www.
eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

 34. Scufl Language, Taverna 1.7.1 Manual, http://www.myGrid.org.uk/usermanual1.7/
 35. SwiftScript Language Reference Manual. http://www.ci.uchicago.edu/swift/guides/historical/

languagespec.php
 36. Wang J, Altintas I, Berkley C, Gilbert L, Jones MB (2008) A High-Level Distributed

Execution Framework for Scientific Workflows. In: Proc. of workshop SWBES08: Challenging
Issues in Workflow Applications, 4th IEEE International Conference on e-Science (e-Science
2008):634–639

 37. Pautasso C, Alonso G (2006) Parallel Computing Patterns for Grid Workflows, In: Proc. of
Workshop on Workflows in Support of Large-Scale Science (WORKS06) http://www.iks.
ethz.ch/publications/jop_grid_workflow_patterns

http://www.hpsearch.org/documents/HighPerfDataStreaming.pdf
http://www.hpsearch.org/documents/HighPerfDataStreaming.pdf
http://linux.die.net/man/1/scp
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.myGrid.org.uk/usermanual1.7/
http://www.ci.uchicago.edu/swift/guides/historical/languagespec.php
http://www.ci.uchicago.edu/swift/guides/historical/languagespec.php
http://www.iks.ethz.ch/publications/jop_grid_workflow_patterns
http://www.iks.ethz.ch/publications/jop_grid_workflow_patterns

38113 Facilitating e-Science Discovery Using Scientific Workflows on the Grid

 38. Flynn MJ (1972) Some Computer Organizations and Their Effectiveness. IEEE Trans. on
Computers, C–21(9):948-960

 39. Wieczorek M, Prodan R, Fahringer T (2005) Scheduling of scientific workflows in the
ASKALON grid environment. SIGMOD Record 34(3): 56–62

 40. Singh G, Kesselman C, Deelman E (2005) Optimizing Grid-Based Workflow Execution. J.
Grid Comput. 3(3–4):201–219

 41. Simmhan YL, Plale B, Gannon D (2005). A survey of data provenance in e-science. SIGMOD
Record, 34(3):31–36

 42. Davidson SB, Freire J (2008) Provenance and scientific workflows: challenges and opportu-
nities. In: Proc. of SIGMOD Conference 2008:1345–1350

 43. Wang J, Altintas I, Berkley C, Gilbert L, Jones MB (2008) A High-Level Distributed
Execution Framework for Scientific Workflows. In: Proc. of the 2008 Fourth IEEE
International Conference on e-Science (e-Science 2008):634–639

 44. Tierney B, Aydt R, Gunter D, Smith W, Swany M, Taylor V, Wolski R (2002) A Grid
Monitoring Architecture. GWDPerf-16–3, Global Grid Forum http://wwwdidc.lbl.gov/GGF-
PERF/GMA-WG/papers/GWD-GP-16-3.pdf

 45. Friendly M (2009) Milestones in the history of thematic cartography, statistical graphics, and
data visualization. Toronto, York University, http://www.math.yorku.ca/SCS/Gallery/
milestone/milestone.pdf

 46. Haber RB, McNabb DA (1990) Visualization Idioms: A Conceptual Model for Scientific
Visualization Systems. IEEE Visualization in Scientific Computing:74–93

 47. Singh JP, Gupta A, Levoy M (1994) Parallel Visualization Algorithms: Performance and
Architectural Implications, Computer, 27(7):45–55 doi:10.1109/2.299410

 48. Ahrens J, Brislawn K, Martin K, Geveci B, Law CC, Papka M (2001) Large-scale data visu-
alization using parallel data streaming. IEEE Comput. Graph. Appl., 21(4):34–41

 49. Strengert M, Magallón M, Weiskopf D, Guthe S, Ertl T (2004) Hierarchical visualization
and compression of large volume datasets using GPU clusters. In: Proc. Eurographics
symposium on parallel graphics and visualization (EGPGV04), Eurographics Association:
41–48

 50. Welch V, Siebenlist F, Foster I, Bresnahan J, Czajkowski K, Gawor J, Kesselman C, Meder S,
Pearlman L, Tuecke S (2003) Security for grid services. In: Proc. of the Twelfth International
Symposium on High Performance Distributed Computing (HPDC-12). IEEE Press

 51. Plankensteiner K, Prodan R, Fahringer T, Kertesz A, Kacsuk PK (2007). Fault-tolerant behav-
ior in state-of-the-art grid workflow management systems. Technical Report. CoreGRID,
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0091.pdf

 52. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee E, Tao J, Zhao Y
(2005) Scientific workflow management and the Kepler system. Concurrency and Computa-
tion: Practice and Experience, 18 (10):1039–1065

 53. Brooks C, Lee EA, Liu X, Neuendorffer S, Zhao Y, Zheng H (2007) Heterogeneous
Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains), EECS Department,
University of California, Berkeley, UCB/EECS-2007-9, http://www.eecs.berkeley.edu/Pubs/
TechRpts/2007/EECS-2007-9.html

 54. Mouallem P, Crawl D, Altintas I, Vouk M, Yildiz U (2010). A Fault-Tolerance Architecture
for Kepler-based Distributed Scientific Workflows. In: Proc. of 22nd International Conference
on Scientific and Statistical Database Management (SSDBM 2010):452–460

 55. Lee EA, Parks T (1995) Dataflow Process Networks. In: Proc. of the IEEE, 83(5):773–799
 56. Altintas I, Barney O, Jaeger-Frank E (2006) Provenance Collection Support in the Kepler

Scientific Workflow System. In: Proc. of International Provenance and Annotation Workshop
(IPAW2006):118–132

 57. Wang J, Altintas I, Hosseini PR, Barseghian D, Crawl D, Berkley C, Jones MB (2009)
Accelerating Parameter Sweep Workflows by Utilizing Ad-hoc Network Computing
Resources: an Ecological Example. In: Proc. of IEEE 2009 Third International Workshop on
Scientific Workflows (SWF 2009) at Congress on Services (Services 2009):267–274

http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0091.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-9.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-9.html

382 J. Wang et al.

 58. Radetzki U, Leser U, Schulze-Rauschenbach SC, Zimmermann J, Lussem J, Bode T, Cremers
AB (2006) Adapters, shims, and glue-service interoperability for in silico experiments.
Bioinformatics, 22(9):1137–1143

 59. Wang J, Korambath P, Kim S, Johnson S, Jin K, Crawl D, Altintas I, Smallen S, Labate B,
Houk KN (2010) Theoretical Enzyme Design Using the Kepler Scientific Workflows on the
Grid, In: Proc. of 5th Workshop on Computational Chemistry and Its Applications (5th CCA)
at International Conference on Computational Science (ICCS 2010):1169–1178

 60. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Röthlisberger D,
Baker D (2006) New algorithms and an in silico benchmark for computational enzyme design.
Protein Sci. 15(12):2785–2794

 61. Tantillo DJ, Chen J, Houk KN (1998) Theozymes and compuzymes: theoretical models for
biological catalysis. Curr Opin Chem Biol. 2(6):743–50

 62. Dantas G, Kuhlman B, Callender D, Wong M, Baker D (2003) A Large scale test of compu-
tational protein desing: Folding and stability of nine completely redesigned globular proteins.
J. Mol. Biol. 332(2):449–460

 63. Meiler J, Baker D (2006) ROSETTALIGAND: Protein-small molecule docking with full
side-chain flexibility. Proteins 65:538–548

	Chapter 13: Facilitating e-Science Discovery Using Scientific Workflows on the Grid
	13.1 Introduction
	13.2 The Core Services to Support e-Science Discovery
	13.2.1 Computation Management
	13.2.1.1 Service-Oriented Computation
	13.2.1.2 Local Resource Management
	13.2.1.3 Resource Allocation

	13.2.2 Data Management
	13.2.2.1 Data Acquisition
	13.2.2.2 Data Storage
	13.2.2.3 Data Transfer
	13.2.2.4 Metadata

	13.2.3 Scientific Process Automation
	13.2.3.1 Workflow Model
	13.2.3.2 Task Parallelism
	13.2.3.3 Workflow Scheduling
	13.2.3.4 Provenance Management

	13.2.4 User Interaction
	13.2.4.1 User Authentication
	13.2.4.2 Portal
	13.2.4.3 Job Monitoring
	13.2.4.4 Data Visualization

	13.2.5 Nonfunctional Services
	13.2.5.1 Security
	13.2.5.2 Failure Recovery

	13.3 Integrating the Kepler Workflow System in the University of California Grid
	13.3.1 University of California Grid
	13.3.2 Kepler Scientific Workflow System
	13.3.3 Integrated Architecture
	13.3.3.1 Portal Layer
	13.3.3.2 Workflow Layer
	13.3.3.3 Grid Layer
	13.3.3.4 Local Resource Layer

	13.4 Application in Computational Chemistry
	13.4.1 Theoretical Enzyme Design Process
	13.4.2 Conceptual Enzyme Design Workflow
	13.4.3 Enzyme Design Workflow in Kepler
	13.4.3.1 Workflow for Execution on Local Cluster Resources
	13.4.3.2 Workflow for Execution on UC Grid
	13.4.3.3 Provenance and Fault Tolerance Support in the Workflow

	13.4.4 Experiment

	13.5 Conclusions
	References

